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Almrtct--The early work of Tomotika provides a basis for analyzing the instability of stationary and 
uniformly moving cylindrical fluid bodies. The classical results of Rayleigh, Christiansen and Weber for 
critical growth rates and wavenumbers are obtained as zero order limits of Tomot/ka's general solution 
expanded in terms of the key characteristic parameters: the viscosity ratio, the density ratio and the 
dispersed and continuous phase Ohn¢sorge numbers. By employing more than one characteristic time, 
these limits, as well as others, are obtained in a general solution framework. Numerical results provide 
insights into the effects of the physical forces, as well as criteria and bounds for the application of the 
limiting cases. 

1. INTRODUCTION 
A problem of long standing fundamental and practical importance in fluid mechanics is that of 
the instability and breakup of cylindrical fluid bodies. Since the early work of Plateau in 1873, 
such problems have occupied the interest of many investigators, and have played a key role in 
the development, analysis, and understanding of hydrodynamic stability and instability 
phenomena. 

Practically, these problems are encountered in numerous industrial atomization, dispersion, 
and mixing operations. In some cases, drops are deformed by external flow fields into long 
cylindrical threads which subsequently break into smaller droplets. In others, liquid jets are 
injected into air or other liquids and disintegrate into small droplets. The creation of such 
dispersions may represent the final steps in the formation of a multiphase product, or may 
represent the intermediate steps in a transport or reaction process. 

Early studies on the motion and instability of cylindrical fluid threads were mainly 
concerned with the distintegration of liquid jets. It is well known that during the formation of a 
jet in air, a wavy interface caused by external disturbances can amplify and finally result in the 
disintegration of the thread into a number of small droplets. If the motion is analyzed relative to 
a convected reference frmhe the problem is equivalent to that of a stationary liquid cylinder. 

Theoretical interest in the instability of cylindrical fluid bodies originated with the early 
works of Plateau (1873) and Rayleigh (1878, 1879, 1892a, 1892b). Plateau correctly attributed the 
instability to the effect of surface tension. He concluded that a liquid cylinder under the 
influence of surface tension was unstable if its length was as long as its circumference. Rayleigh 
(1878) was the first to recognize that the jet was subject to disturbances at the nozzle of all 
possible wavelengths (or modes) and that the final critical wavelength corresponded to the 
mode with the largest growth rate. From potential energy considerations, Rayleigh developed 
relations for an inviscid liquid jet in an inviscid gas medium and showed that the most rapidly 
growing axisymmetric disturbance is the one for which 2¢ra]A = 0.696, where a is the initial 
radius of the jet and ,t is the wavelength of the disturbance. Rayleigh's result was in agreement 
with the previous experimental observations of Savart which were reported by Plateau. 
Rayleigh (1879) also considered the effects of non-axisymmetric disturbance and found the 
liquid jet to be stable for all purely non-axisymmetric deformations. Somewhat later, he 
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presented treatments of the instability of a viscous liquid jet in a gas (Rayleigh 1892a) and of a 
gas jet in an inviscid liquid (Rayleigh 1892b). 

Tomotika (1935) obtained a relation which included the viscous and inertial effects of both 
phases, but limited his analysis and determination of the critical modes to systems with 
dominant viscous forces. Experimental support of Tomotika's analysis was given by the 
experimental results of Taylor (1934) on drop and thread breakup in shear and extensional flow 
fields. Christiansen (1955) and Christiansen & Hixson (1957) considered the case where the 
viscous effects in both the continuous and dispersed liquid phases were negligible. These results 
included as special cases the previous results of Rayleigh for systems with one phase being 
liquid and the other being a gas. More recently, Whitaker (1976) considered the effects of 
dynamic interracial effects on the breakup of viscous liquid threads in an inviscid gas media. 

Related studies have been reported by Ponstein (1959) who considered the instability of 
rotating cylindrical jets, and Goren (1961) who considered the instability of annular threads of 
fluid. All of these studies involved the use of linearized stability theory with the inherent 
assumption of small amplitude disturbances. Also, Goren (1964) used a variational approach 
involving minimum surface area and fixed volume to determine the shape of an unstable liquid 
thread. 

Meister & Scheele (1967) have noted that the application of the limiting case analyses to jet 
and thread breakup problems under conditions which are consistent with the underlying 
theoretical assumptions has generally produced good agreement with experimental obser- 
vations. However, the lack of clearly defined bounds of validity has often led to the application 
of these analyses in situations where they are not applicable. Obviously, incorrect inter- 
pretations and inaccurate predictions can then result. To avoid such difficulties and to identify 
the domain where each limiting relation is applicable, an appraisal of the problem, in full 
generality, is required. The work of Meister and Scheele was a step in this direction. Un- 
fortunately, the limiting cases were identified in terms of physical statements rather than from 
limits of the characteristic dimensionless groups in the general solution. As a result, a clear and 
complete interpretation of the limiting cases was not obtained. In particular, the criteria 
established for the regions of validity of the limiting cases do not always encompass the 
complete domain of validity. 

In the present work the problem of the instability of stationary cylindrical fluid bodies is 
analyzed and discussed from a unified viewpoint. A complete solution structure is presented in 
which the limiting cases are defined by restrictions on appropriate characteristic groups. This 
analysis clearly identifies the nature of the approximations and the relationship between 
Tomotika's results and the classical results of Rayleigh, Christiansen, and Weber, as well as 
other limiting cases not covered by these investigators. 

2. BASIC E Q U A T I O N S  

Consider a stationary cylindrical column of a viscous fluid with its axis coincident with the 
z-axis in cylindrical coordinates (r, &, z) immersed in an infinite mass of another viscous fluid. 
For incompressible Newtonian fluids with constant physical properties, if the axisymmetrical 
disturbance waves have amplitudes sufficiently small so that the non-linear inertial terms can be 
neglected, and if the body force effects are small compared to the viscous, inertial and 
interracial effects, then the equation of motion for the disturbance velocity can be written as 

a_Ev = _1 Vp + vV2v [11 
Ot p 

where v = (u, o, w) and u = ~[p is the kinematic viscosity. 
By introducing the Stokes stream function tO and by eliminating pressure terms between the 



component equations of motion, we obtain the linearized differential equation 
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and a is the growth rate of the wave, k is the wave number, Iq(x) and Kq(x) are modified 
Besset functions of order q with argument x, and C1, (72, C3 and C4 arbitrary constants to be 
determined by the boundary conditions. 

The finiteness of the physical motions at r=O and r ~  gives the following stream 

~D = Re {[ C, Drll(kr) + C3orI~(lr)] exp (at + ikz)} 

~bc = Re {[C2crKl(kr) + C4crKi(mr)] exp (at + ikz)} [5] 

where the subscripts D and C denote the dispersed and continuous phases respectively, and 1 
and m are defined by 

( ~z) '/2 ( ~"/~ 
t- k 2 + and m k s+ 

The boundary conditions at the interface of the two phases are: 
(1) The velocity is continuous at the interface, 

[uo = Uc],=a, and [w~ = WC],=a. [6] 

(2) The shear stress is continuous at the interface, 

[(P,~)o = (Pr,)c],=, or [~/o (Ouo+ OwD~ _ /OUc±OWc~'[ 
k--~- -~-r ] = , c  k'-~" ~- Or ]J,==' [71 

(3) The difference in the normal stress across the interface is due to the interfacial surface 
tension, or (with P as the total stress) 

1 t 

[4] 

where 

The above equation can be satisfied by motions proportional to the real part of exp ( a t ~  
ikz). This gives the solution 

= Re {[C1rll(kr) + GrK l ( k r )  + Gr l l (n r )  + C~rKl(nr)] exp (at + ikz)} 
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Here A denotes the corresponding difference between the continuous and the dispersed phase 
quantities, and R1 and R2 are the principal radii of curvature of the interface. The integration of 
the z-component equation of motion will give the expression for the hydrostatic pressure p in 
terms of the velocity components, or alternatively the stream function ~,. Equation [8] can then be 
written as 

[ l d  (r ~ (1~$~_k2~)]  ~ p = A { ~ L r ~ \  ~ r \ r O r /  - ~ ( ~ r ) -  ~r(r)}~_~ ~¢k(1-k2a2) 
_ / 

[91 

The constants in [4] and [5] are determined from the linear algebraic equations arising from 
the substitution of [4] and [5] into [6], [7] and [9]. Nontrivial solutions exist provided the 
determinant of the coefficient matrix of this system of linear homogeneous equations vanishes, 
and thus we obtain the frequency equation as: 

II /l KI Kl 
XIo Xo[o - XKo - XcKo 

2 UX2I, U(X 2 + X2)[~ 2XZKI (X 2 + X2)/~, 

F, F2 F3 F4 

= 0 [10]  

with 

Fj = 2~rloX(Slo- 11) + 1r2~Jo + X ( X  2 - 1)I1, 

F2 = 2 ' t r l D X ( X D I o  - I1) + X (  X 2  - 1)fl, 

F3 = - [21rlcX(XKo + K1) + ~r2cKo], 

F4 = - [2 re1 cX(XcKo + KI)], 

where 

X = ka, XD = la, Xc = ma, U = ~dVc, 

= : K o  = = 

( ~ )  (a3a2pc) (aa_~D) 
ql'2D = , 7 T 2 c  = - -  , "TI'ID = 

and 

Equation [10] was first derived by Tomotika (1935) and is the core relation in the instability 
problem of stationary cylindrical fluid bodies. Equation [10] gives a relation between the growth 
rate a, the wave length of the disturbance A, and the geometry and physical properties of the 
fluid system. Since it is assumed that the cylindrical fluid thread is initially subjected to 
arbitrary disturbances involving all possible wavelengths, the critical wavelength A* at breakup 
corresponds to the mode with the largest growth rate a*. The critical growth rate a* indicates 
that rate at which the breakup process proceeds. For example, in jet breakup the larger the 
critical growth rate, the shorter the distance from the nozzle to the point of disintegration. The 
critical wavelength gives the distance between the breakup points along the thread, and 
therefore governs the ultimate drop size after breakup. 
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3. ANALYSIS 

If we take a characteristic time O and define the dimensionless growth rate as S = a0, [10] 

can be written as 

+ 2xs [an--°L O~ a~c]'~3:0o" J X(X2- 1)''~4 [11] 

where 3:~, 3::, ~3 and ~4 are lengthy expressions involving modified Bessel functions and are 
listed in the Appendix. 

For various characteristic times, the above equation can be expressed in terms of the 
following dimensionless quantities: the viscosity ratio U(= ~d*lc), the density ratio G(=pdpc), 
the Ohnesorge numbers defined as Oho = (ao'pD)il2/~lO and Ohc = (ao'pc)~l:/7?c, the growth rate 
S, and the wave number X. (Here the Ohnesorge numbers are defined differently from the form 
~[(a~rp) ~ often used; see Ohnesorge 1936 and Miesse 1955.) 

Note that the relation between the two Ohesorge numbers is 

G i/20hc = U Oho. [12] 

For reasons to be discussed below, we pick characteristic times of the form Oza = (a3P$~) 112 
and Ova = (a~/~/cr) where the first subscripts (I and V) refer to inertial and viscous effects, 
respectively, and the second subscript can be either D for dispersed phase or C for continuous 
phase. The corresponding dimensionless growth rate S for a given 0 can then be defined as 
S~ a =aOt a or Sva = aOva. In table 1 the forms of the dimensionless groups in [10] and [11] are 
listed for different selections of O. 

Terms in the last two rows of table 1 appear in the quantities X ~ =  [X2+(a~a/vo)] and 
Xc ~ = [X~+ (a2Mvc)]. The dimensionless growth rates corresponding to the different charac- 
teristic times are related by 

SIp = GI/2 Slc = OhDSvD = OhDUSvc. [131 

It is apparent from the results in table 1 and [12] that the problem can be expressed in terms of 

Table I. The characteristic times and the dimensionless parameters in the problem 
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any three of the quantities U, G, Oho and Ohc or any independent representation obtained 
therefrom, with S and X being the dependent variables. 

Any one of the four characteristic times in table 1 can be used in Tomotika's general 
equation. However, for the limiting cases involving extreme values of Oho and Ohc, we find 
that only specific characteristic times can be used to obtain meaningful results. In particular, in 
some cases where the Ohnesorge number approaches an extreme value, the dimensionless 
growth rate obtained from [10] or [11] can vanish even when the dimensional growth rate ~ is 
finite. 

As an example, consider the case where U --- 1 and G = 1 (note here Oho = Ohc), and the 
characteristic time is Ovo (=Ovc here). We see from figure l(a) that Svo vanishes as Oho~:~. 
However, the dimensional growth rate a is finite in this case as indicated by the results in figure 
l(b) where a different characteristic time (0to) is used. Clearly, in each case there is an 
appropriate characteristic time which provides a one-to-one correspondence between the 
dimensionless and dimensional growth rates. In the case just cited 0~o is used for Oho ~ ~ and 
Ovo for Oho --> ~. 

Hence, to obtain meaningful limiting case results, more than one characteristic time is 
required. From the example just given, Ov~ is used for cases with small Ohnesorge numbers and 
0i~ for large Ohnesorge numbers. Also, 08o is used for cases involving large values of U and G, 
i.e. when the dispersed phase effects dominate: O~v is used when U and G are small and 
continuous phase effects dominate. 

Such comments are also appropriate with regard to the wavelength X. We see in figures l(a) 
and l(b) that the critical growth rate X* varies from 0.5620 to 0.6769 as Oho takes on values 
from 0 to o~. Here again, the accurate determination of X* at small Ohnesorge numbers requires 
the use of Ovo (or Ovc) and at large Ohnesorge numbers the use of 0lo (or 0~c). 

4. L IM ITING CASES 

In this section a number of limiting cases of the problem are presented. The analysis starts 
from Tomotika's general relation,[10] or [11]. It is shown that the relations among the limiting 
cases can be clearly identified in terms of the Ohnesorge numbers, the viscosity ratio, and the 
density ratio. A summary of all these relations is given in figure 2. The limiting cases in the 
upper portion of this figure are those where viscous effects dominate; the upper right corner 

oo I 03 

0 05 10 0 05 

x x 

Figure 1. Growth rates and wavenumbers for systems with equal viscosities and densities. (Note here, 
O h = O h o = O h c a s  U = G = I . )  
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corresponds to dominant dispersed phase viscous effects and the left corner to dominate 
continuous phase viscous effects. The inertial effects are dominant in the lower portion of the 
figure, with the right corner corresponding to dispersed phase dominance and the left corner to 
continuous phase dominance. We now summarize the growth rate-wavelength expressions for 
the limiting cases shown in figure 2. 

(a) OhD-- 0, Ohc - 0 
In this case we obtain Tomotika's special equation (Tomotika 1935, [34]) which can be 

deduced from [ll] by a Taylor expansion about the indicated limiting values of the charac- 
teristic groups. Tomotika obtained this equation from an expansion about pD ~0,  pc ~0, 

however, its applicability is much broader than this, as the dimensionless form of the limit 
indicates. The equation for this limit can be represented by: 

where 

and 

Ii X lo -  11 Ki -XKo - KI 

I0 lo + Xll -Ko XK~-  Ko 
Ull UXIo KI -XKo 
m~ M2 M3 M4 

(X 2-  1)I~ 
M1 = UIIS + 

M2 = U(II + XI'~ - Io)S + - -  

M3 = K'jS 

M4 = (K'~ + XK]' + Ko)S. 

(X 2-  1)1'1 

=0 [14] 

Here, the characteristic times containing viscosities are used. As explained previously, we will 
use OVD for the cases U-> 1, and Ovc for the cases U-< 1. The subcases in this category are: 

(i) U-*~. In the case where the viscosity-ratio becomes larger and larger,[14] gives the 
growth rate (with OVD used as a characteristic time) as 

[1 (X 2-  1)/2 ] 
SVD + 2-v _OCTo/1,)2j I151 

which agrees with the equation derived by Rayleigh (1892(a), [31]) for a low density viscous jet 
in a "vacuum" (low density, inviscid) medium. 

(ii) U-->0. As U~0,[14] reduces to the form, 

(1 - X2)12 ] 
Svc = 1 + X~U(-X~0/K,)2J [16] 

which is the same as a relation given by Tomotika (1935, [37]) for the system of a "vacuum" jet 
in a low density viscous medium. 

(b)  OhD ~ z¢; Ohc - 
By these limits, we can derive Christiansen's equation (1955) from [11] as: 

X(1 - X 2) [17a] 
S2D = (IdlO + (Ko/KO/G 
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or  

x(!,,,- x ~) 
S2c = G( Id I~) + ( Kd K,) " [17b] 

These equations can be reduced further to the cases corresponding to large and small (7. 
(i) G 400. In this case,[17a] reduces to 

S~o = X d  - Xb(l, llo) [18] 

which is the famous relation given by Rayleigh (1879) for an inviscid jet in a vacuum 
medium. Although it was derived here from [17a], there is actually no constraint on Ohc since it 
can also be derived from another equation obtained by Rayleigh (1892a, [30]) with U ~ ,  
G-~ oo and Oho ~ 0o (see figure 2). 

(ii) G-+0. With O h c -  ~ and G ~0,[17b] reduces to 

S]c= X(I - X2XK~/Ko). [19] 

which is identical to another relation derived by Rayleigh (1892b) for a vacuum jet in an inviscid 
medium. I t  can be seen that only Ohc is required to be defined here, and OhD is not a key 
parameter in this case, 

(c) U-® 
If we have U ~, 1 and the other parameters kept finite, [11] can be reduced to 

S2of, + 2XS~2/OhD = X(1 - X2)f3 + f4 [20a] 

o r  

OhgS~of ,  + 2XSvd2 = X(1 - X~)5 + A [20b] 

with 

f, =/~ [1 + 1 ( X;o/ [ ,  + XKo/K, "~ ] + Ko [ ( XcKo/K, + XIo/I, "~"1 Xgo/[, - XIJI, 

Xo Ko 1). / xdj  - xxj1, ] 

j i ,  
~Xcgotg,  " x K o t r , /  J " 

and 

[ -  Io .Iol 4X 3 
t  T- 7,JOh • 

Equivalent forms with 0t selected as the characteristic time can also be written by refering to 
[13]. Yet those are mainly used for systems with small G, and these less practical systems (with 
U ~ ~ and G ~ 0) are not considered here. 

Equation [20a] and [20b] can be used in cases where a highly viscous liquid jet or thread 
breaks up in a low viscosity liquid medium. 
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(i) U ~ ~, G ~ ~. For large density ratios and finite Oho, [20a] and [20b] reduce to 

o r  

los}D + 2X Slo(2XIO_l)=X(1 2 4)(3 / [o Io \ 
1-, O h o  , I, 

[21a] 

I-°ohffS2vo+2XSvo(2X I° I ) = X ( 1  2 4X' / [o lo \ 11 \ 11- -X)+oh-----~XD~-XL ) [21b] 

which are the same as the equations derived by Rayleigh (1892a, [30]). This equation is 
applicable to those cases involving a highly viscous liquid jet moving in a gas medium. 

In those cases where OhD~0, we can obtain [15] from [21b] by expanding it around 
Ohff ~ 0 (see Lee 1972 for details). For the cases where OhD--* ~, [21a] will give [18]--another 

relation derived by Rayleigh. 
Normally, unstable wave motions occur when X < 1, and by taking the limit as X~O, [21] 

reduces to the equation of Weber (1931): 

3X2 X2(1 - X2) Oho2S2vo+3X2Svo. [221 
S~o + ~ S~o - 2 - 

This equation has been widely used and is shown here as a special case of Rayleigh's equation 
(t21a] or [21b] here) with a term (2XS/Oho)'(OS/aX)x-,o on the r.h.s, of [21a] or [21b] neglected 
(see Lee 1972). This equation can be used for all values of Oho, and apparently can also be 
reduced to the simplified forms of [15] and [18] with Oho approaching zero and infinity, 

respectively. 

(d) U - 0 
With finite values of the Ohnesorge numbers and the density ratio, [11] can be reduced to 

the following form for very small values of U: 

o r  

S:  2XStc . . ,  tcgl + ~ g 2  = Atl  - X 2 ) g 3  + g4 

Oh~S2vcgl + 2XSvcg2 = X(1 - X2)g3 + g4 

[23a1 

[23b1 

with 

 iofdXd:o/e.-XKo/K, (Xoro/rl + XKo/K, ] K0[ (xce.o/e,+ XIo/I, . l] 
gl=-~-i L \ ~ - ~  / - \  X ~ ; ~  / J + - ~ I L G \ ' ~ - - ~  / ' 

_ 2 x K ° + I ]  g2 = [G(1 2X~) ' (XcK°/K'-XK°/KI~+ 

[ G(XcKo/K1- XKo/Kt ] + 1 ] 
g3 = L - J ' 

and 

4X3[.  K,o_ x Ko ~ 
g4 = -O--~ ~ AC "-~l K, / ' 

This relation can be used for a low viscosity liquid thread in liquid medium. 
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An important sub,case in this category is the limiting case where a gas jet is injected into 
some lo/v viscosity liquid medium with G - 0 while Ohc is still finite. This gives 

Ko-2 2X r Ko 1]SIc X(I-X2)+g, "-~tSic+'~c[2X-~l+ = [24a] 

o r  

-~K°ohc2S2vc+ 2X[2X K~ + 1]Svc = X(1-X2)+ g4 [24b] 

Further simplification can be made to reduce [24a] to [19] as Ohc-*ao and [24b] to [16] as 
Ohc ~ 0. In the latter case, we need to expand [24b] around Ohc 2 = 0 (see Lee 1972). 

It should be noted that equivalent forms of the above equations can also be written with 0~D 
instead of 0~c. Yet those equations are only interesting in the cases where U -  0 and G -  =, 
which are not often realized in practice, and therefore, are not presented here. 

5. NUMERICAL RESULTS 

Some numerical computations are now presented to confirm the above analysis and to 
provide a basis for determining the range over which the limiting cases are valid. In these 
computations, the physical properties of the dispersed phase are used when U >- l, and those of 
the continuous phase when U -< 1. As for the characteristic times, those containing the inertial 
effects, 0~, are used in the systems with large Ohnesorge numbers and those containing the 
viscous effects, Ov~, are used in the systems with small Ohnesorge numbers. In addition to 
showing the ranges of validity of the limiting case solutions more clearly, these selections of the 
characteristic times also provide higher computational stability. 

All of the results are obtained as unstable motions for the range X < 1 with the shape of 
curves shown in figure I(a, b). Since the motions are exponentially proportional to (at + ikz), 
only the mode with maximum growth rate will be shown and discussed in the following 
illustrations. 

In figure 3, the maximum growth rates and their corresponding values of wavenumber, X*, 
are shown for the systems with G = 1 and U -> 1. The characteristic times 0ID and OvD are used 
for the cases with high (figure 3a) and low (figure 3b) values of OhD, respectively. In figure 
3(a, b) the point P corresponds to the case where U -  ao and OhD- 0, which is the case given 
by [15]. The point Q, with OhD -- oo for all U, is the result given either by [17a] or [17b], which 
are alternative forms of Christiansen's equation. It can be seen that the problem converges to the 
extreme cases rapidly in both of the parameters OhD and U. The point R denotes systems with 
OhD - 0 and U = 1, a case which is seldom encountered in actual practice. 

Since 

a* = (~/a %,)~/2S%, 

we note from figure 3(a) that for systems with equal dispersed phase and continuous phase 
densities, an increase in the continuous phase viscous effects (or forces) relative to the other 
physical effects (inertial and interfacial) produces lower values of a* and higher values of X*, 
which physically results in longer breakup lengths in jets and smaller drops after breakup. 
Increases in the interfacial forces result in shorter breakup lengths and smaller drops. Also, 
noting that 
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Figure 3(a). Critical growth rate and wavenumber results--G = l.O, U_> l; large Oho results. At point P, 
Oho = 0, U - ®; at point Q, Oho - 0o for all U; at point R, Oho = 0, U = 1. (Note that the results with 
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X*  
Figure 3(b). Critical growth rate and wavelength results--G = 1.0, U > I; Small Oh~ results. Points P, (2 
and R are the same limits indicated in figure 3(a). (Note, in this case, the results with Oho = 0 show finite 

critical growth rate.) 

we see from figure 3(b) that an increase in the inertial forces  (or an increase in both Po and Pc 
with G = 1) produces  longer breakup lengths and smaller drops. Finally,  both figures 3(a) and 
3(b) indicate that the largest drops result from s y s t e m s  with high v i scos i ty  ratios and sy s t ems  

with small  values of  O h ~  
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For systems with U = 1 and U-< 1, similar figures for S* and X* can also be obtained with 
0Ic and Ovc as characteristic times. We show here only the results for tho critical wavenumbers 
X* together with the results for U-> 1 in figure 4. 

The parameters used in figure 4 are Ohc and Ohv for the systems U < 1 and U > 1, 
respectively. The two sets of curves match one another at U = 1 in this example since G = 1. 
The top curve is a horizontal line through X* = 0.6769 which corresponds to the result from 
Christiansen's equation when Ohv ~ O h c - ~ .  The bottom curve is that corresponding to 
Tomotika's equation (1935, [34]) with OhD - O h c  - 0 .  Curves between these two limiting cases 
are those with intermediate Ohnesorge number values. It can be seen that X* is particularly 
sensitive to changes in OhD (or Ohc) at the lower values of these parameters. The two ends of 
these curves approach the limiting cases of U ~ 0  and U ~ ~, which correspond to the results 
from [23] and [20], respectively. Two dashed curves starting at about U = 0.28 and Ohc = 0 
show the loci of the X* maxima as a function of Ohnesorge numbers. Since the points on these 
loci give the minimum size of droplets resulting from the breakup of the cylindrical fluid body, 
these results support the common observation in mixing processes that the best dispersion 
(smallest drops) can be obtained with fluids of similar viscosities. The results here show that 
this is generally true for systems of small and moderate Ohnesorge numbers. 

In figure 5(a, b) we show results for U ~ ~, the first being for the smaller OhD values and the 
second for the larger values. Point P denotes the solution of Rayleigh's equation ([15]) with 
Ohv = 0. The curve QR denotes Christiansen's equation ([17]) with OhD ~ oo, and the points Q 
and R are results from [18] and [19] with G ~ ~ and 0 respectively. It can be seen that the 
motions with OhD = 1 are again in the middle between the extreme ends Oho = 0 and OhD- oo 
and the convergence is fast toward each end. The changes due to density ratios from 0 to 1 are 
much larger than those from 1 to oo and, in fact, the cases G -> 1 can be replaced by the extreme 
end with G - ~ without much error. It should be pointed out that the situations around point Q 
(U--,oo and G-~0) are seldom realized with real systems. Also, the numerical computations 
become somewhat unstable in these cases. The dimensionless growth rates SIp and Svo vanish in 
these computations, yet as mentioned previously, this does not mean the motions are stable. Since 
these problems are of little practical interest, we do not discuss these in detail here. 

Physically, the results in figure 5(a, b) infer that for systems with U ~ o~, increases in 
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Figure 5(a). Critical growth rates and wavcnumbers for systems with U -  ~ and small Oh~ At point P, 
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Figure 5(I)). Critical growth rates and wavenumbers for systems with U -  ~ and large Oh~ Points P, 0 
and R are the same limits indicated in figure 5(a). 

continuous phase inertial forces or dispersed phase viscous forces result in longer jet breakup 
lengths. Also, by the values of X*,  we conclude that larger droplets are formed in systems with 
Oho > 2 in the "former case and smaller drops in systems with Oho < 1. Increases in dispersed 
phase inertial forces also result in longer jet breakup lengths and smaller drops. Finally, shorter 
jets and smaller droplets are produced with increases in the interfacial forces- - the  same 
observation as noted for the G = 1 case represented in figures 3 and 4. 

As for the limiting cases with U = 0, the results are shown in figure 6(a, b) with Ohc and G 
as parameters. The basic features are similar to those in the case of U ~ ~. Point P denotes the 
result of  Tomotika's equation ([16]) with Ohc = 0, and curve QR shows the result of  Christian- 
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Figure 6('o). Critical growth rates and wavenumbers for systems with U =0; large Oh(: results. Points P, Q 
and R are the same fimits indicated in figure 6(a). 

sen's equation ([17]). Point R denotes another physical situation seldom encountered in practice 
(Ohc-+~o, U=0) .  

The results in figure 6(a, b) for systems with U = 0 indicate that shorter breakup lengths and 
smaller dispersion droplets are produced When the continuous phase viscous effects are 
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decreased and the interfacial effects are increased. The dispersed phase inertial effects, when 
increased, produce longer breakup lengths and smaller droplets. 

It is also interesting to show the results for the limiting case given by Tomotika (1935, [34]; 
[14] in this paper). These results are shown in figure 7. Note here that critical growth 
rate-wavelength results are represented by the dotted line corresponding to the maximum value 
of c~ at each value of U. Physically, these results would arise in systems where the viscous 
effects tend to dominate. When U = 0, we obtain the limit given by Tomotika ([16]) and when 
U - ~  we obtain one of Rayleigh's relations ([15]). These results infer longer jet breakup 
lengths with increasing continuous phase or dispersed phase viscosity. Also, the minimum size 
drops are produced when U--= 0.28, a result already cited in connection with figure 4. 

6. REGIONS OF APPLICABILITY--LIMITING CASES 

The limiting solutions of Tomotika's general equation can often be used to predict the 
growth rate and the wavelength in many situations of practical interest. The principal concern 
in these cases is the degree to which a given limiting solution is applicable. As yet, quantitative 
criteria for determining whether a limiting solution is applicable have not been clearly 
established. As noted previously, Meister & Scheele (1967) were concerned with this problem 
and presented criteria for a number of physical situations, however, their criteria were 
somewhat narrow and did not encompass the full range of possible physical situations which 
could arise. 

In the work here we have obtained bounds of validity for the four limiting cases occupying 
the corners in figure 2; specifically, [15], [16], [18] and [19]. Each of these limits were 
interpreted as the zero order term in a Taylor series expansion of S* or X* in terms of the 
appropriate characteristic dimensionless groups. For instance, in the case of Rayleigh's equa- 
tion (1892b; [19] of this paper) the characteristic groups are G, 1/Oho and 1/(Gl120ho) and the 
expansion is about the point (0, 0, 0). For the dimensionless growth rate we obtain 

{aS*c] G+{ ~gS*c ] { c%~:~c "~ ,,,,nlZ2Ohm) ) 
S~c = S'c(0,0,0)+ \ 8G ]o \a(1/Ohc)/o (1]Ohc)+ \8(I/G 1/2 . . . .  Oho))]0'""-'  

+ second and higher order terms. 
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Figure 7. Growth rates and wavenumbers for systems with vanishing Ohnesorge numbers. Dotted line 
refers to critical growth rate--wavenumber relation. 
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The region of validity of the limit S~c(O, 0, 0) corresponding to some acceptable error level ~ is 
then 

k,(G) + k2(l/Ohc) + k3(l/(G I/20hD)) < • 

where k, is the magnitude of the maximum value of (aS}dOG) over the interval in question, i.e. 
from (0, 0, 0) to (G, l/Ohc, (1/(G u20hD))); k2 and k3 being similar derivatives with respect to 
l/Ohc and (I/(G v20ho)), respectively. 

In the work here the coefficients kl, k2 and k3 were estimated from numerical calculations in 
the vicinity of the limit point using Tomotika's general equation. In each case, conservative 
estimates were used in establishing the bounds of validity. The details of these calculations are 
described elsewhere (Yu 1974). We list here only the results corresponding to a 5 per cent error 
bound. 
(a) Rayleigh's equation (1892 b, [19] of this paper) 

This limit arises when O h c ~ ,  (GU2Oho)--*~ and G ~ 0  (implicit: Uo0) .  The critical 
growth rate and wavelength values for this limit are 

or* = 0.819( o'/ a3 pc) I/2 [25] 

A* = 12.96a. ' [26] 

For 5 per cent error (or less) in S* and X*, the following criteria define the regions of validity: 

30.0 7.3 
S'c: 7 4 . 4 G + ~ c + ~ <  1 

44.8 10.3 
X*: l l 2 0 G + ~ - - ~ c + ~ <  1. 

[27] 

[28] 

Meister and Scheile obtained the criteria for a maximum 5 per cent error in the growth rate 
to be 

Ohc > 25.5. 

Obviously, from [27] and [28] this criteria would be valid only for sufficiently small values of G 
and (G 1/20hD) -j. Since G must be quite small and Ohc must be quite large to satisfy [27] and 
[28], this limit is often referred to as a gas jet in a low viscosity liquid. 
(b) Rayleigh's equation (1879, [18] of this paper) 

This limit is realized when OhD-->~, Oh~/G->~, and G ~ (implicit: U ~ ) .  Physically, 
this limit might be thought of as a low-viscosity liquid in a gas. The critical growth rate and 
wavenumbers are 

ct* = 0.344( tr/ a 3 po)u2 [29] 

A* = 9.03 a [30] 

and the regions of validity (to 5 per cent maximum error) are defined by 

38.8 . 4.08 / G l / 2 \  
s*o: +--a--+ 1.54 < i [311 

X*: 203 086 (GI/2'~ 
12 1 [32] 

I~ '  Vol. 7, No. ~-B 
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The criterion given by Meister and Scheele for 5 per cent maximum error in the growth rate is 

Oho > 14.2. 

Here again, their criterion does not seem to be sufficiently general. Also, no criterion is given 
for the wavelength A*. 

(c) Tomotika 's equation (1935, [37]; [16] in this paper) 
This limit is defined by U ~ 0, Ohc ~ 0, and U Oho 2 ~ 0 (G ~ 0, implicit). The critical growth 

rate and wavelength are 

a* = 0.5tr/a~Tc [33] 

A* ~ ~.  [34] 

For 5 per cent maximum error in S*c we have 

14,000 U + 8.00Ohc 2 + 0.08 U Oho z < 1. [35] 

No meaningful bound on A* is possible in this case. Physically, this case might correspond 
to a gas jet in a highly viscous liquid. 

(d) Rayleigh's equation (1892a, [37]; [15] this paper) 
This limit is defined by Oho~0,  Oh2/U-~0, and U ~  ( G ~ ,  implicit). The critical 

growth rate and wavelength are 

a* = O.166tra/ ~o [36] 

A* ~ ~.  [37] 

The limit for a* is valid to 5 per cent within the region 

903 Oh ff + 0.42 ~ < 1. Svo: ---~+84.3 h 2 [381 

This case might correspond to a highly viscous liquid jet in a gas. Meister and Scheele obtained 

Oho < 0.85 

as a 5 per cent criterion on a* in this case. 

7. CONCLUDING REMARKS 

It is clear from the results of the previous sections that the breakup of cylindrical fluid 
bodies involves a complex interaction between interfacial, viscous, and inertial forces. The 
characteristic groups which naturally arise in these problems are the viscosity ratio, the density 
ratio, and the continuous and dispersed phase Ohnesorge numbers. In order to present the 
problem in a unified dimensionless framework with all of the classical results and their limiting 
domains identified, it is necessary to employ more than one characteristic time. Quantitatively, 
the limiting relations appear to have a large range of applicability, and hence it is not surprising 
that they have been used extensively in the past with considerable success. 

A new relation ([23]) is obtained for the cases where U --0. This equation, together with its 
subsequent limiting forms, should be useful in situations where low viscosity liquid threads 
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breakup in highly viscous surroundings. Such situations can arise in dispersion and mixing 
operations encountered in the polymer process industry. 

Finally, we note that the present analysis is strictly valid only for stationary or uniformly 
moving cylindrical fluid bodies. The analysis given here is certainly inaccurate if significant 
frictional and form drag occurs at the interface. Such effects would result in non-uniform 
velocity patterns for the base flow and in important non-linear inertial contributions. Still, the 
present study provides a basis from which further studies of even these more complex 
problems can proceed. 

Acknowledgement--The authors wish to acknowledge the assistance of Mr. K. L. Yu in 
carrying out various numerical calculations associated with defining the criteria and bounds for 
the limiting case solutions. 
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NOMENCLATURE 

diameter of an undisturbed cylindrical thread, m 
functions defined in [20] 
functions defined in [23] 
~/-I 
wavenumber, m -1 
parameter defined in [4] 
parameter defined in [5] 
parameter defined in [3] 
hydrostatic pressure, Pa 
a dummy number (used for the order of Bessel functions) 
radial coordinate 
time, s 
radial component of v 
velocity vector 
axial component of v 
argument in Bessel functions 
axial coordinate 
arbitrary constants in [3]-[5] 
operator defined in [2] 
functions defined in [10] 
functions defined in [11] and listed in the Appendix 
density ratio (=po/pc) 
modified Bessel Functions of order q with argument x 
functions defined in [14] 
Ohnesorge numbers (=(a~p)m]~) 
total stress (Pr~ for shear, P,, for normal stress), Pa 
principal radii of curvature, m 
the real part of ( ) 
dimensionless growth rate (=a0) 
viscosity ratio (=~o/~c) 
wavenumbers, defined in [10] 
modified wavenumbers, defined in [10] 

Greek letters 
c~ 

/3 
A 

dimensional growth rate, s-' 
a dummy variable 
difference between two quantities 
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V gradient operator, defined in [1] 
7t viscosity, Pa. s 
0 characteristic time (defined in table 1), s 
,~ wavelength of a disturbance, m 
v kinematic viscosity (=~/p), m2/s 

dimensionless numbers, defined in [10] 
p density, kg/m 3 

interfacial tension, Pa.  m 
polar coordinate in cylindrical coordinate system 
stream function, m2/s 

Superscripts 

t pt 

a function of special arguments 
derivatives of the function with respect to its argument 
the value of this parameter at the maximum growth rate 

Subscripts 
C a quantity of the continuous phase 
D a quantity of the dispersed phase 
I a quantity relating to the inertial effects 
V a quantity relating to the viscous effects 
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APPENDIX 

The quantities ~;1, ~2, ~;3 and ~4 in [11] are of the following forms: 

~, = [ uf~x~ + x~)Ix K_o_ x g_-olJ + {~x~- x~)[x~ K_-° + xo ~1 
t L K~ K~JJ L K~ l~J 

£o Ko Io 

L I i  11 J L K1 I i  J J 

{ ~  x~)fx'_o_ ~ ~o -,- ..,- ,. , ,  

tL I~ l~J L K~ K~J 

and 


